Learning to Auto Weight: Entirely Data-Driven and Highly Efficient Weighting Framework

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concordance-Based Data-Driven Learning Activities and Learning English Phrasal Verbs in EFL Classrooms

In spite of the highly beneficial applications of corpus linguistics in language pedagogy, it has not found its way into mainstream EFL. The major reasons seem to be the teachers’ lack of training and the unavailability of resources, especially computers in language classes. Phrasal verbs have been shown to be a problematic area of learning English as a foreign language due to their semantic op...

متن کامل

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

A single weighting approach to analyze respondent-driven sampling data

BACKGROUND AND OBJECTIVES Respondent-driven sampling (RDS) is widely used to sample hidden populations and RDS data are analyzed using specially designed RDS analysis tool (RDSAT). RDSAT estimates parameters such as proportions. Analysis with RDSAT requires separate weight assignment for individual variables even in a single individual; hence, regression analysis is a problem. RDS-analyst is an...

متن کامل

A Framework for Ontology Learning and Data-driven Change Discovery

In this paper we present Text2Onto, a framework for ontology learning from textual resources. Three main features distinguish Text2Onto from our earlier framework TextToOnto as well as other state-of-the-art ontology learning frameworks. First, by representing the learned knowledge at a meta-level in the form of instantiated modeling primitives within a so called Probabilistic Ontology Model (P...

متن کامل

Data-Driven Learning in an Incremental Grammar Framework

Overview Incremental processing of both syntax and semantics, both in parsing and generation, is of significant interest for modelling the human language capability, and for building systems which interact with it. Formal linguistics has made significant contributions to this; one example is the framework Dynamic Syntax, which provides an inherently word-by-word incremental grammatical framewor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2020

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v34i04.5913